Search results for "Weak solution"

showing 10 items of 52 documents

On the critical behavior for time-fractional pseudo-parabolic type equations with combined nonlinearities

2022

AbstractWe are concerned with the existence and nonexistence of global weak solutions for a certain class of time-fractional inhomogeneous pseudo-parabolic-type equations involving a nonlinearity of the form $|u|^{p}+\iota |\nabla u|^{q}$ | u | p + ι | ∇ u | q , where $p,q>1$ p , q > 1 , and $\iota \geq 0$ ι ≥ 0 is a constant. The cases $\iota =0$ ι = 0 and $\iota >0$ ι > 0 are discussed separately. For each case, the critical exponent in the Fujita sense is obtained. We point out two interesting phenomena. First, the obtained critical exponents are independent of the fractional orders of the time derivative. Secondly, in the case $\iota >0$ ι > 0 , we show that the gradie…

Algebra and Number TheoryCaputo fractional derivativecritical exponentSettore MAT/05 - Analisi Matematicapseudo-parabolic type equationglobal weak solutionAnalysiscombined nonlinearitie
researchProduct

Wave propagation in 1D elastic solids in presence of long-range central interactions

2011

Abstract In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kroner–Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is …

Body forceAcoustics and UltrasonicsCONTINUAWave propagationMechanical EngineeringWeak solutionMODELSElastic energyGRADIENT ELASTICITYWeak formulationElasticity (physics)Condensed Matter PhysicsWave equationMEDIANONLOCAL ELASTICITYClassical mechanicsMechanics of MaterialsBoundary value problemSettore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Sound and Vibration
researchProduct

Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term

2001

Abstract Our aim in this article is to study the following nonlinear elliptic Dirichlet problem: − div [a(x,u)·∇u]+b(x,u,∇u)=f, in Ω; u=0, on ∂Ω; where Ω is a bounded open subset of RN, with N>2, f∈L m (Ω) . Under wide conditions on functions a and b, we prove that there exists a type of solution for this problem; this is a bounded weak solution for m>N/2, and an unbounded entropy solution for N/2>m⩾2N/(N+2). Moreover, we show when this entropy solution is a weak one and when can be taken as test function in the weak formulation. We also study the summability of the solutions.

Bounded and unbounded solutionsQuasi-linear elliptic problemsDirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionMathematical analysisQuadratic functionWeak formulationNonlinear systemElliptic curveQuadratic equationBounded functionQuadratic gradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

The Neumann Problem for the Total Variation Flow

2004

This chapter is devoted to prove existence and uniqueness of solutions for the minimizing total variation flow with Neumann boundary conditions, namely $$ \left\{ \begin{gathered} \frac{{\partial u}} {{\partial t}} = div\left( {\frac{{Du}} {{\left| {Du} \right|}}} \right) in Q = (0,\infty ) \times \Omega , \hfill \\ \frac{{\partial u}} {{\partial \eta }} = 0 on S = (0,\infty ) \times \partial \Omega , \hfill \\ u(0,x) = u_0 (x) in x \in \Omega , \hfill \\ \end{gathered} \right. $$ (2.1) where Ω is a bounded set in ℝ N with Lipschitz continuous boundary ∂ Ω and u0 ∈ L1(Ω). As we saw in the previous chapter, this partial differential equation appears when one uses the steepest descent method …

CombinatoricsPhysicsBounded setWeak solutionImage (category theory)Bounded functionMathematical analysisNeumann boundary conditionBoundary (topology)Context (language use)Uniqueness
researchProduct

Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds

2022

We establish sufficient conditions for the nonexistence of nontrivial solutions to higher order evolution inequalities, with respect to the time variable. We consider a nonlocal source term, and work on complete noncompact Riemannian manifolds. The obtained conditions depend on the parameters of the problem and the geometry of the manifold. Our main result recovers some nonexistence theorems from the literature, established in the whole Euclidean space.

Computational MathematicsNumerical AnalysisRiemannian manifoldsnontrivial global weak solutionsSettore MAT/05 - Analisi MatematicaApplied Mathematicshigher order evolution inequalitiesNonexistenceAnalysis
researchProduct

Variable exponent p(x)-Kirchhoff type problem with convection

2022

Abstract We study a nonlinear p ( x ) -Kirchhoff type problem with Dirichlet boundary condition, in the case of a reaction term depending also on the gradient (convection). Using a topological approach based on the Galerkin method, we discuss the existence of two notions of solutions: strong generalized solution and weak solution. Strengthening the bound on the Kirchhoff type term (positivity condition), we establish existence of weak solution, this time using the theory of operators of monotone type.

ConvectionKirchhoff type termApplied MathematicsWeak solutionMathematical analysisWeak solutionGeneralized solutionType (model theory)ConvectionTerm (time)Pseudomonotone operatorNonlinear systemsymbols.namesakeMonotone polygonGalerkin basisSettore MAT/05 - Analisi MatematicaDirichlet boundary conditionsymbolsGalerkin methodAnalysisMathematics
researchProduct

On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

2016

We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.

Dilatant35D30General MathematicsConstant Viscosity Elastic (Boger) Fluidsfluid-structure interactionhemodynamics01 natural sciencesexistence of weak solutionPhysics::Fluid Dynamics76A0576D03Fluid–structure interactionshear-thinning fluids0101 mathematicsMathematicsWeak solution010102 general mathematicsMechanicsnon-Newtonian fluidsNon-Newtonian fluid010101 applied mathematicsShear rateCondensed Matter::Soft Condensed Matter74F10Shear (geology)Generalized Newtonian fluidshear-thickening fluids35Q30
researchProduct

Nonlinear elliptic equations having a gradient term with natural growth

2006

Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…

Dirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionNonlinear elliptic operatorsMathematical analysisGradient term; Nonlinear elliptic operators; Unbounded solutionsType (model theory)Elliptic curveElliptic operatorCompact spaceUnbounded solutionsSettore MAT/05 - Analisi MatematicaBounded functionp-LaplacianGradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow

2015

Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.

Dirichlet problemMean curvature flowMean curvatureApplied MathematicsBounded functionWeak solutionMathematical analysisMathematics::Analysis of PDEsp-LaplacianInverse mean curvature flowUniquenessAnalysisMathematicsJournal of Differential Equations
researchProduct

Three solutions for a perturbed Dirichlet problem

2008

Abstract In this paper we prove the existence of at least three distinct solutions to the following perturbed Dirichlet problem: { − Δ u = f ( x , u ) + λ g ( x , u ) in  Ω u = 0 on  ∂ Ω , where Ω ⊂ R N is an open bounded set with smooth boundary ∂ Ω and λ ∈ R . Under very mild conditions on g and some assumptions on the behaviour of the potential of f at 0 and + ∞ , our result assures the existence of at least three distinct solutions to the above problem for λ small enough. Moreover such solutions belong to a ball of the space W 0 1 , 2 ( Ω ) centered in the origin and with radius not dependent on λ .

Dirichlet problemPure mathematicsBounded setApplied MathematicsWeak solutionMathematical analysisBoundary (topology)Ball (mathematics)RadiusSpace (mathematics)AnalysisCritical point (mathematics)MathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct